

Philadelphia University Faculty of Science Department of Mathematics Mid-Term Exam

Instructor: Dr.Abdullah Alsoboh	Academemic Year: $2023-2024$ Semester: 1^{st} Semester Course Name: Real Analysis 1 Course Number: 250311 Date: $30/04/2024$
S.N. :	Duration: 60 Min
Name:	I.D. Number:

 \mathbf{Q}_1 : [/5 marks] Circle True or False. Read each statement carefully before answering.

- 1. True False. If x and y are real numbers with x < y, there exists an irrational number z: x < z < y.
- 2. True False. If a > b and c < 0, then ca > cb.
- 3. True False. Every bounded sequence is convergent.
- 4. True False. The sum of two divergent sequences diverges.
- 5. True False. A monotone sequence of real numbers is divergent.

 \mathbf{Q}_2 : [/5 marks] This question consists of 5 multiple choice questions (1 Mark for each), where each question has 4 options. Put the answer symbol in the table below.

Question #	1	2	3	4	5
Answer Symbol					

1. If every nonempty set of real numbers that has an upper bound also has a supremum in $\mathbb R.$ This property is:

- a) The Order Property of \mathbb{R}
- b) The Completeness Property of $\mathbb R$
- c) The supremum Property of \mathbb{R} d) The Archime
 - d) The Archimedean Property
- 2. If $x \in \mathbb{R}$, then there exists $n_x \in \mathbb{N}$ such that $x \leq n_x$. This property is:
 - a) The Order Property of ℝc) The supremum Property of ℝ
 - b) The Completeness Property of \mathbb{R} of \mathbb{R} d) The Archimedean Property
- 3. Which of the following is **NOT** a property of the supremum of a set of real numbers?
 - a) It is an upper bound of the set.
 - b) It is the smallest upper bound of the set.
 - c) It may or may not belong to the set.
- d) It is unique.

4. $\inf \left\{ \frac{1}{n} - \frac{n}{n+1}, \quad n \in \mathbb{N} \right\} =$ a) 0 b) -1 c) 1 d) $\frac{1}{2}$

5. The sequence (a_n) is defined as $a_n = \sqrt{n+1} - \sqrt{n}$ What can be said about this sequence as n tends to infinity?

a) It converges to 1 b) It converges to 0

c) It converges to $\sqrt{2}$ d) It diverges to infinity

Q₃: [/6 marks] Consider the sequence $a_n = \frac{4n+1}{3n+1}$.

1. Write the first four terms of a_n .

2. Use the definition of the limit of a sequence to establish $\lim_{n\to\infty} \frac{4n+1}{3n+1} = \frac{4}{3}$.

Page 3 of 4

 \mathbf{Q}_4 : [/6 marks]Evaluate the following limits (Show the details of your work)1. $\lim_{n \to \infty} \frac{2}{4^{n+1}}$

2.
$$\lim_{n \to \infty} \frac{\cos(3n-1)}{4-2n}$$

3.
$$\lim_{n \to \infty} \frac{\cos(2n)}{n^2 + 1}$$

Q₅: [/4 marks] Let $x_1 = 4$ and $x_{n+1} = 1 + \frac{1}{2}x_n$.

1. Show that x_n is monotone and bounded.

2. Is x_n convergent? explain. If so find limit.

 \mathbf{Q}_6 : [/4 marks] Prove that $\sqrt{3}$ is not a rational number.